Exercise 21

Solve the differential equation using (a) undetermined coefficients and (b) variation of parameters.

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{2 x}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-2 y_{c}^{\prime}+y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r+1=0
$$

Solve for r.

$$
\begin{gathered}
(r-1)^{2}=0 \\
r=\{1\}
\end{gathered}
$$

Two solutions to the ODE are e^{x} and $x e^{x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{x}+C_{2} x e^{x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=e^{2 x} \tag{2}
\end{equation*}
$$

Part (a)
Since the inhomogeneous term is an exponential function, the particular solution is $y_{p}=A e^{2 x}$.

$$
y_{p}=A e^{2 x} \quad \rightarrow \quad y_{p}^{\prime}=2 A e^{2 x} \quad \rightarrow \quad y_{p}^{\prime \prime}=4 A e^{2 x}
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
\left(4 A e^{2 x}\right)-2\left(2 A e^{2 x}\right)+\left(A e^{2 x}\right)=e^{2 x} \\
A e^{2 x}=e^{2 x}
\end{gathered}
$$

Match the coefficients on both sides to get an equation for A.

$$
A=1
$$

The particular solution is

$$
y_{p}=e^{2 x} .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{x}+C_{2} x e^{x}+e^{2 x},
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

Part (b)

In order to obtain a particular solution, use the method of variation of parameters: Allow the parameters in the complementary solution to vary.

$$
y_{p}=C_{1}(x) e^{x}+C_{2}(x) x e^{x}
$$

Differentiate it with respect to x.

$$
y_{p}^{\prime}=C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x) x e^{x}+C_{1}(x) e^{x}+C_{2}(x)(1+x) e^{x}
$$

If we set

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x) x e^{x}=0, \tag{3}
\end{equation*}
$$

then

$$
y_{p}^{\prime}=C_{1}(x) e^{x}+C_{2}(x)(1+x) e^{x} .
$$

Differentiate it with respect to x once more.

$$
y_{p}^{\prime \prime}=C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x)(1+x) e^{x}+C_{1}(x) e^{x}+C_{2}(x)(2+x) e^{x}
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
& {\left[C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x)(1+x) e^{x}+C_{1}(x) e^{x}+\overline{C_{2}(x)}(2+x) e^{x}\right]-2\left[C_{1}(x) e^{x}+\overline{C_{2}(x)}(1+x) e^{x}\right] } \\
&+\left[C_{1}(x) e^{x}+C_{2}(x) x e^{x}\right]=e^{2 x}
\end{aligned}
$$

Simplify the result.

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x)(1+x) e^{x}=e^{2 x} \tag{4}
\end{equation*}
$$

Subtract the respective sides of equations (3) and (4) to eliminate $C_{1}^{\prime}(x)$.

$$
C_{2}^{\prime}(x) e^{x}=e^{2 x}
$$

Solve for $C_{2}^{\prime}(x)$.

$$
C_{2}^{\prime}(x)=e^{x}
$$

Integrate this result to get $C_{2}(x)$, setting the integration constant to zero.

$$
C_{2}(x)=e^{x}
$$

Solve equation (3) for $C_{1}^{\prime}(x)$.

$$
\begin{aligned}
C_{1}^{\prime}(x) & =-C_{2}^{\prime}(x) x \\
& =-\left(e^{x}\right) x \\
& =-x e^{x}
\end{aligned}
$$

Integrate this result to get $C_{1}(x)$, setting the integration constant to zero.

$$
C_{1}(x)=-e^{x}(x-1)
$$

Therefore,

$$
\begin{aligned}
y_{p} & =C_{1}(x) e^{x}+C_{2}(x) x e^{x} \\
& =\left[-e^{x}(x-1)\right] e^{x}+\left(e^{x}\right) x e^{x} \\
& =-e^{2 x}(x-1)+x e^{2 x} \\
& =e^{2 x},
\end{aligned}
$$

and the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{x}+C_{2} x e^{x}+e^{2 x},
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

